Peer-reviewed Publications

1) Spellman TJ, Svei M, Kaminsky J, Manzano-Nieves G, Liston C (2021). Prefrontal deep projection neurons enable cognitive flexibility via persistent feedback monitoring. Cell. 184, 1–17, May 13, doi: https://doi.org/10.1101/828590.

2) Tamura M, Spellman TJ, Rosen AM, Gogos JA, Gordon JA (2017). Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task. Nat Commun. 2017 Dec 19;8(1):2182.

3) Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, Harris AZ, Gordon JA, Kellendonk C (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci. 2017 Jul;20(7):987-996.

4) Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, Spellman TJ, Gordon JA (2016). Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Activity and Behavior. Neuron. 2016 Feb 17;89(4):857-66.

5) Spellman TJ, Rigotti M, Ahmari S, Fusi S, Gogos J, Gordon JA (2015). Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 522(7556): 309-14.

6) Stujenske JM, Spellman TJ, Gordon JA (2015). Spatiotemporal dynamics of light and heat propagation during optical stimulation. Cell Reports. 12(3):525-34.

7) Mukai J, Tamura M, Fénelon K, Rosen AM, Spellman TJ, Kang R, MacDermott AB, Karayiorgou M, Gordon JA, Gogos JA (2015). Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015 May 6;86(3):680-95.

8) Rosen AM, Spellman TJ, Gordon JA (2015). Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis. Biol Psychiatry. 2015 Jun 15;77(12):1041-9.

9) Ahmari S, Spellman TJ, Douglas N, Kheirbek M, Simpson B, Deisseroth K, Gordon JA, Hen R (2013). Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 340(6137):1234-9.

10) McClintock SM, DeWind NK, Husain MM, Rowny SB, Spellman TJ, Terrace H, Lisanby SH. (2013). Disruption of component processes of spatial working memory by electroconvulsive shock but not magnetic seizure therapy. Int J Neuropsychopharmacol. 2013 Feb;16(1):177-87.

11) Cycowicz YM, Luber B, Spellman TJ, Lisanby SH. (2009). Neurophysiological characterization of high-dose magnetic seizure therapy: comparisons with electroconvulsive shock and cognitive outcomes. J ECT. 2009 Sep;25(3):157-64.

12) Cycowicz YM, Luber B, Spellman TJ, Lisanby SH. Differential neurophysiological effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS) in non-human primates. Clin EEG Neurosci. 2008 Jul;39(3):144-9.

13) Spellman TJ, McClintock S, Terrace H, Husain M, Lisanby SH (2008). Differential Effects of High Dose Magnetic Seizure Therapy (MST) and Electroconvulsive Shock (ECS) on Cognitive Function. Biological Psychiatry. 15;63(12): 1163-70. PMID: 18262171

14) Spellman TJ, Peterchev A, Lisanby SH (2009). Focal electrically administered seizure therapy: a novel form of ECT illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction. Neuropsychopharmacology. 34(8):2002-10. PMID: 19225453

Reviews/commentary:

1) Spellman TJ, Liston CM (2020). Toward Circuit Mechanisms of Pathophysiology in Depression. American Journal of Psychiatry. AJP-20-03-0280 

2) Spellman TJ, Gordon JA (2015). Synchrony in schizophrenia: a window into circuit-level pathophysiology. Current Opinion in Neurobiology. 30:17-23.

bibliography: https://www.ncbi.nlm.nih.gov/pubmed/?term=timothy+spellman